Numerical solution of partial differential equations in time-dependent domains

نویسندگان

  • Einar Rønquist
  • Øystein Tråsdahl
چکیده

Numerical solution of heat transfer and fluid flow problems in two spatial dimensions is studied. An arbitrary Lagrangian-Eulerian (ALE) formulation of the governing equations is applied to handle time-dependent geometries. A Legendre spectral method is used for the spatial discretization, and the temporal discretization is done with a semi-implicit multi-step method. The Stefan problem, a convection-diffusion boundary value problem modeling phase transition, makes for some interesting model problems. One problem is solved numerically to obtain first, second and third order convergence in time, and another is used to illustrate the difficulties that may arise with distribution of computational grid points in moving boundary problems. Strategies to maintain a favorable grid configuration for some particular geometries are presented. The Navier-Stokes equations are more complex and introduce new challenges not encountered in the convection-diffusion problems. They are studied in detail by considering different simplifications. Some numerical examples in static domains are presented to verify exponential convergence in space and second order convergence in time. A preconditioning technique for the unsteady Stokes problem with Dirichlet boundary conditions is presented and tested numerically. Free surface conditions are then introduced and studied numerically in a model of a droplet. The fluid is modeled first as Stokes flow, then Navier-Stokes flow, and the difference in the models is clearly visible in the numerical results. Finally, an interesting problem with non-constant surface tension is studied numerically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of time-dependent foam drainage equation (FDE)

Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009